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Validated numerics is the art of designing efficient numerical algorithms, yet reliable ones, i.e. with guaran-
teed error bounds encompassing all sources of errors: uncertain data, rounding errors, discretization, etc.
The goal is to provide scientists in a broad sense with a “certified pocket calculator”. This includes engineers
working on safety-critical applications, but also a novel generation of mathematicians using computers to
prove their theorems.

The goal of this Ph.D. is to design and implement validated algorithms to compute with algebraic curves,
which arise in many branches of science. More specifically, we are interested by the difficult case of singu-
larities, which may cause catastrophic numerical errors if not dealt properly with. These achievements will
allow us to treat currently unreachable applications in computer algebra, physics and robotics.

I. Scientific context: Numerical computation with singular algebraic curves

Motivation. Real and complex algebraic curves are a fundamental object with surprisingly many applications in
computer science, mathematics and physics, ranging from automatic geometric theorem proving (see e.g. [16]
and references therein) or pure complex algebraic geometry (the crucial Abel-Jacobi map of a Riemann surface
[5]) to computer-aided geometric design [15], nonlinear waves models in physics (e.g., nonlinear Schrödinger,
Korteweg-de Vries and Kadomtsev-Petviashvili equations [2, 23]), computer-aided design and robotics (con-
nectivity queries for motion planning [9, 14]). Although they are simply defined implicitly by polynomial rela-
tions in their coordinates:

P1(x1, . . . , xn) = ·· · = Pr(x1, . . . , xn) = 0, P j ∈K[x1, . . . , xn] withK = Q, R, C . . . ,

manipulating them efficiently and explicitly (parametrization, intersection, topology, etc.) requires sophisti-
cated algorithms that have been continuously developed over last decades in computational algebraic geom-
etry [10, 1], either purely symbolically or with the use of numerics [27, 18].

Singularities are the points where the curve is not similar to a line, like a pinch or a crossing of two branches
(see the two red dots in the figure above). They occur in many situations like the plane projection of a space
curve, or when a robot passes through a singular position (drop in the number of degrees of freedom). Particu-
lar care is needed at singularities since algorithms designed for regular curves may exhibit critical behavior at
those points, like division by zero or numerical instability. This is a challenge for applications where maximum
confidence is required, such as safety-critical engineering or computer-aided proofs in mathematics: a surgical
robot is not safe up to erratic numerical behavior, nor is a geometry theorem true up to rounding errors.

Validated numerics [22, 30] aims at computing with numerical set-valued representations (real intervals, com-
plex balls, set of functions described by a polynomial approximation and an error bound, etc.), thus exploiting
the efficiency of floating-point arithmetic while guaranteeing actual mathematical statements: the solution is
contained in the computed set. Such techniques have been successfully employed for critical applications and
computer-assisted proofs, particularly in the case of differential equations [29, 31, 7].

The goal of this Ph.D. thesis is to treat singularities of algebraic curves using symbolic-numeric methods and vali-
dated numerics, towards both efficiently and maximum reliability from algorithm design to implementation.
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II. Objectives of the thesis: Validated numerical algorithms for singular
algebraic curves, implementations and applications

The Ph.D. thesis consists of three main objectives detailed below, in chronological order. First, one needs to
design a symbolic-numeric algorithm to separate and parameterize the branches of an algebraic curve at sin-
gularities (O1), combining of the efficiency of floating-point arithmetic and rigorous error bounds obtained
from computer algebra and a posteriori validation. After that, a neat implementation (O2) of the resulting al-
gorithms will be realized in Julia using validated numerics and dedicated libraries, to finally address some of
the challenging applications (O3) mentioned in the introduction.

(O1) Symbolic-numeric Newton-Puiseux algorithm using a posteriori validation. The Newton-Puiseux al-
gorithm computes parametrizations of the branches of a curve implicitly defined by P(X ,Y )= 0 at a singular-
ity x0 under the form of a Puiseux series (i.e., power series with fractional exponents), with algebraic coefficients
ak:

Y (X )= ∑
k⩾k0

ak(X − x0)
k
e , e ∈N∗, k0 ∈Z, ak ∈C (k ⩾ k0).

Despite significant improvements made on Newton-Puiseux over the last years (see [25, 26] and references
therein), the intrinsic representation size of the algebraic numbers ak makes this symbolic algorithm not com-
petitive, even for problems P(X ,Y ) = 0 of moderate degree (10 – 100). Consequently, in presence of singu-
larities, many algorithms avoid the use of Puiseux series and prefer turning around such points when possible.
Doing so, however, they ignore the crucial geometrical information encoded by singularities, and they increase
the risk of numerical instability when working close to a singular point without exploiting it.

Yet, in many situations, computing accurate numerical approximations of the ak together with rigorous and
tight error bounds, rather than exact representations, is sufficient. Therefore, we propose to design a validated
symbolic-numeric Newton-Puiseux algorithm, following these steps:

1. Compute the coefficients ak numerically following the structure of the Puiseux series (i.e., its exponents),
obtained using [24]. Note that, without this structure information, such a numerical method applied
close to a singularity would be highly unstable.

2. Finally, design a validation method to compute rigorous and tight error bounds on the ak ’s approximate
values. This will involve techniques known as fixed-point a posteriori validation [6, §3.3], where error bounds
are obtained afterwards from the application of a suitable fixed-point theorem. A specific difficulty here
to tackle is that singular equations are typical examples of ill-posed problems: they become regular but
highly ill-conditioned under infinitesimal perturbations.

Analyzing the bit complexity of the resulting algorithm will be a key step to assess its efficiency compared to
purely symbolic Newton-Puiseux and to confirm hopes to tackle currently untractable applications.

(O2) Providing reliable, efficient and open-source implementations. Besides theoretical results, another
important part of the Ph.D. is a neat implementation of this validated symbolic-numeric Newton-Puiseux al-
gorithm. Our first requirement is an efficient implementation in Julia relying on the Arb library for validated
numerics [21]. Depending on the specific skills of the Ph.D. student, further implementation-related directions
can be explored:

• Parallelism in the execution tree of Newton-Puiseux can be exploited to design high performance com-
puting (HPC) implementation of the algorithm. This would involve the expertise of Pierre Fortin (Profes-
sor in our team CFHP) at the intersection between HPC, computer arithmetic and computer algebra.
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• Guaranteeing the properties of an algorithm on the paper is good, but guaranteeing its implementation is
even better. Formal proof and theorem provers [17] make possible to design certified (i.e., formally verified)
implementations at the very level of logic. Provided that the Ph.D. student is familiar with the Coq theorem
prover [4], an implementation of this algorithm into the library ApproxModels [8] developed by one of
us would be a valuable achievement.

Our objective is treating examples of much higher degrees, say 1,000 – 10,000, than the purely symbolic
Newton-Puiseux algorithm.

(O3) Applications to computational algebraic geometry. The resolution of singularities of algebraic curves
thanks to the symbolic-numeric Newton-Puiseux algorithm will be the cornerstone of improvements for algo-
rithms in real and complex algebraic geometry. This will enable us to tackle computationally currently chal-
lenging applications in the following domains:

• Connectivity queries are essential for motion planning in robotics [9, 14]. They can be handled by comput-
ing a roadmap of the algebraic variety, thus reducing the problem to connectivity queries on real alge-
braic curves. Several recent algorithms [20, 19] rely on projecting the curve onto a plane and analyzing
the resulting 2D singular curves [13]. Efficient Puiseux series over the reals will make it possible to ana-
lyze these singularities and lift the branches in the original space. We hope to improve the complexity of
computing real curve topology, which is one of the bottlenecks in the roadmap methods for robotics.

• Homotopy methods make it possible to compute numerical roots of polynomial systems by deformation
(the homotopy) from simpler systems [3]. The curves tracking the roots may cross each other, result-
ing in singularities that we will be able to treat rigorously with the validated symbolic-numeric Newton-
Puiseux algorithm.

• The Abel-Jacobi map [5, §1] links crucial information of a complex algebraic curve (a Riemann surface) to
computational data, namely contour integrals along paths connecting singularities. Computing them
rigorously is a major step towards proofs of existence of particular solutions to nonlinear wave equa-
tions in physics [2, 12, 11, 23]: KdV (Korteweg-de Vries), KP (Kadomtsev-Petviashvili) and NLS (nonlinear
Schrödinger). This also has applications in computer algebra, e.g. integrating algebraic functions [28].

III. Ph.D. Candidate and Supervisors

This research proposal comes with a guaranteed Ph.D. funding as part of the ANR JCJC project “CNACS”. The
supervisors are members of the CFHP team (Computer Algebra and HPC) in the CRIStAL research unit at Uni-
versité de Lille:

• Adrien Poteaux is an expert in algorithmic methods for algebraic curves and Puiseux series.

• Florent Bréhard is an expert in validated numerics and formally verified numerical algorithms.

The candidate must have preferably a mixed background in computer science (scientific/numerical program-
ming, algorithmics) and mathematics (algebra, complex analysis), and a taste for computational mathematics
towards applications. Previous experiences in computer algebra, HPC and/or formal proof will also be consid-
ered.
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