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abstract
Isolating the roots of a univariate polynomial p(z) ∈ C[z] is a fundamental problem in computer science
and numerical analysis. It raises fundamental theoretical and practical questions addressed by a rich litera-
ture, such as complexity upper bounds, rigorous error bounds or the design of efficient and reliable imple-
mentations. The goal of this internship is to extend some of these questions to a bivariate setting: Given a
polynomial P(x, y) ∈ C[x, y], we want to isolate the solutions y(x) called Puiseux series to P(x, y(x)) = 0 at
the points called the singularities of the plane algebraic curve defined by P . More precisely:

⋄ What is the complexity (in term of bit operations) to isolate a solution yi(x), i.e., to compute its coeffi-
cients in floating-point arithmetic to a sufficient accuracy and a sufficient order in x so that we can distin-
guish it from all other series solutions yj(x), j ̸= i?

⋄ Can we design an efficient validation routine, that, given a approximation ỹi(x) of yi(x) with floating-
point coefficients, computes effecive, rigorous and tight error bounds for them?

Solving these questions paves the way towards improving algorithms in real and complex computational al-
gebraic geometry used to solve challenging questions in many domains, such as robotics, theoretical physics
or symbolic computation.

The first two sections provide an overview of the scientific context, the third one presents two possible ob-
jectives for the internship, and the last one details applications on a longer term, possibly during a PhD.

I. Validated numerical computation with singular algebraic curves

Algebraic curves over the reals or the complexes, are fundamental for many applications in computer sci-
ence, mathematics and physics. Although they are simply defined implicitly by polynomial relations in their
coordinates:

P1(x1, . . . , xn) = ·· · = Pr(x1, . . . , xn) = 0, P j ∈K[x1, . . . , xn] withK = Q, R, C . . . ,

manipulating them efficiently and explicitly (parametrization, intersection, topology, etc.) requires sophisti-
cated algorithms that have been continuously developed over last decades in computational algebraic geom-
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etry [9, 1], either purely symbolically or with the use of numerics [26, 14].

Singularities are the points where the curve is not similar to a line, like a pinch or a crossing of two branches
(see the two red dots in the figure above). They occur in many situations like the plane projection of a space
curve, or when a robot passes through a singular position. Particular care is needed at singularities since algo-
rithms designed for regular curves may exhibit critical behavior at those points, like division by zero or numeri-
cal instability. This is a challenge for applications where maximum confidence is required, such as safety-critical
engineering or computer-aided proofs in mathematics: a surgical robot is not safe up to erratic numerical be-
havior, nor is a geometry theorem true up to rounding errors.

Validated numerics [18, 29] aims at computing with numerical set-valued representations (real intervals,
complex balls, set of functions described by a polynomial approximation and an error bound, etc.), thus ex-
ploiting the efficiency of floating-point arithmetic while guaranteeing actual mathematical statements: the
solution is contained in the computed set. Such techniques have been successfully employed for critical appli-
cations and computer-assisted proofs (see, e.g., [28, 30, 6]). The goal of this internship is to treat singularities of
algebraic curves using symbolic-numeric methods and validated numerics to combine efficiency and reliability.

II. A validated symbolic-numeric approach to the Newton–Puiseux algorithm

The Newton–Puiseux algorithm computes parametrizations of the branches of a curve implicitly defined by
P(X ,Y )= 0 at a singularity x0 under the form of a Puiseux series (i.e., power series with fractional exponents),
with algebraic coefficients ak:

Y (X )= ∑
k⩾k0

ak(X − x0)
k
e , e ∈N∗, k0 ∈Z, ak ∈C (k ⩾ k0). (1)

Despite significant improvements made on Newton–Puiseux over the last years (see [23, 24] and references
therein), the intrinsic representation size of the algebraic numbers ak makes this symbolic algorithm not com-
petitive, even for problems P(X ,Y ) = 0 of moderate degree (10 – 100). Consequently, in presence of singu-
larities, many algorithms avoid the use of Puiseux series and prefer turning around such points when possible.
Doing so, however, they ignore the crucial geometrical information encoded by singularities, and they increase
the risk of numerical instability when working close to a singular point without exploiting it.

Yet, in many situations, computing accurate numerical approximations of the ak together with rigorous and
tight error bounds, rather than exact representations, is sufficient. Therefore, we propose to design a validated
symbolic-numeric Newton–Puiseux algorithm, following strategy exposed in [21]:

1. First, reduce the equation P(X ,Y )= 0 modulo some well-chosen prime number p and apply the Newton–
Puiseux algorithm over it. Working overFp (or some algebraic extension of it) allows us to avoid the prob-
lem of coefficient growth. Unfortunately, the obtained coefficients ak cannot be lifted to ak ∈ C in the
original problem. However, under easy-to-satisfy conditions on p, the structure of the series (1) (i.e., its
exponents) is the same over F andC.

2. Now, compute the coefficients ak numerically following the structure of the Puiseux series (i.e., its expo-
nents). Note that, without this structure information, such a numerical method applied close to a singu-
larity would be highly unstable.

3. Finally, design a validation method to compute rigorous and tight error bounds on the ak ’s approximate
values. This will involve techniques known as fixed-point a posteriori validation [5, §3.3], where error bounds
are obtained afterwards from the application of a suitable fixed-point theorem.
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III. Objectives of the internship

While the first step above was successfully addressed in [22], substantial work is needed to provide theoret-
ical results, practical algorithms and efficient implementations to fully solve the problem. In particular, this
internship focuses on two key aspects regarding steps 2 and 3, respectively. Each of them can be considered
separately, based on the intern student’s interests in the proposed topics.

Numerical isolation and Boolean complexity. A rich literature is dedicated to the case of univariate polyno-
mials, with extensive complexity results on the number of bit operations (Boolean complexity) to approximate
the roots to a given precision or to isolate them from other roots (see, e.g., [25, 19, 17] and references therein).
Some complexity bounds also exist for bivariate generalizations of this problem, that is, the isolation the points
(x, y) solution to: {

P(X ,Y )= 0,

R(X )= 0.

In our setting, R(X ) would be the resultant of P(X ,Y ) and ∂P(X ,Y )/∂Y : its roots x0 are the abscissa of the
singularities and x-critical points of the curve, i.e., the x0 for which the Puiseux series (1) are nontrivial. In [12],
an algorithm requiring at most Õ (n6 +n5τ) bit operations is given, where n is a bound on the total degree of
P and τ the bit-size of the integer coefficients of P . Our goal is to isolate not only the solutions (x0, y0), but
the singular part of the Puiseux series at those points (the minimal part of the series that allows to distinguish
this solution of P(X ,Y )= 0 from the other ones). We believe it possible to obtain Boolean complexity bounds
similar or slightly larger than those of [12] (where only points are isolated). This must be viewed in light of ex-
isting Boolean complexity bounds for the symbolic Newton–Puiseux algorithms (see, e.g., [31] where a bound
of Õ (n36τ2) bit operations is proved for the computation of the singular part of a single Puiseux series above
x0 = 0).

One-step a posteriori validation. Complexity bounds for root isolation, even in the univariate case, are most
of the time asymptotic and not fully explicit. To obtain effective and rigorous enclosures of the solutions, a poste-
riori validation methods mentioned in the third step above are often more appropriate. In opposition to a “brick
by brick” validation approach where each elementary subroutine of Newton–Puiseux would be individually
validated and then composed, we here propose to elaborate a global approach where error bounds for the nu-
merical Puiseux series are derived in a single validation step. A specific difficulty is that singular equations are
typical examples of ill-posed problems: naive interval approaches fail to capture the structure of the singularity,
which is not stable under infinitesimal perturbations. Exploiting the structure information obtained from step
1 is thus necessary. To help us with this task, we propose to take inspiration from a previous work [7] dedicated
to the singular, but univariate problem of validating multiple roots of univariate polynomials.

IV. The future: Applications to computational algebraic geometry

Beyond this internship (but possibly during a PhD afterwards), the resolution of singularities of algebraic curves
using the symbolic-numeric Newton–Puiseux algorithm will be the cornerstone for improvements of algorithms
in real and complex algebraic geometry. This, in turn, will help tackling computationally challenging applica-
tions in the following domains:

• Robotics often involves polynomial systems describing real algebraic (or semi-algebraic) varieties repre-
senting, for example, the possible configurations of a robot. Connectivity queries are essential for motion
planning, and they can be handled by computing a roadmap of the algebraic variety [8, 13], thus reducing
the problem to connectivity queries on real algebraic curves. A possible approach for this [16, 15] is to
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project the curve onto a plane and to analyze the resulting 2D singular curve [12]. Such an analysis could
be improved with the use of symbolic-numeric Puiseux series.

• Homotopy methods are used to compute numerical roots of polynomial systems by deformation (the ho-
motopy) from simpler systems [3]. The curves tracking the roots may cross each other, resulting in singu-
larities that can be treated rigorously with the validated symbolic-numeric Newton–Puiseux algorithm.

• The Abel-Jacobi map [4, §1] links crucial information of a complex algebraic curve (a Riemann surface) to
computational data, namely contour integrals along paths connecting singularities. Computing them
rigorously is a major step towards proofs of existence of particular solutions to nonlinear wave equa-
tions in physics [2, 11, 10, 20]: KdV (Korteweg-de Vries), KP (Kadomtsev-Petviashvili) and NLS (nonlinear
Schrödinger). This also has applications in computer algebra, e.g. integrating algebraic functions [27].
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