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Differential equations in scientific computing: a new challenge for the Rocq proof assistant

As mathematics increasingly relies on computer-assisted proofs to tackle long-standing conjectures and com-
plex theorems, formal proof [7] has become essential for establishing confidence and acceptance of these com-
putational methods among mathematicians. Within the landscape of existing proof checkers, Rocq (formerly
Coq) [1] stands out due to its ability to perform computations directly within its logical framework. This capa-
bility is for example crucial for combinatorial problems, like the Four Colour Theorem [6], but becomes even
more critical for proofs involving intricate numerical computations used to approximate continuous objects –
such as real or complex numbers, functions and integrals. Fortunately, Rocq is already equipped with unique
libraries formalizing floating-point and interval arithmetic for basic operations over the reals. Yet, it still lacks
support for solving more advanced operations. A major example is differential equations [11], which are ubiq-
uitous across mathematical domains and play a key role in major unsolved conjectures like the Navier-Stokes
problem.

Except for very specific cases, differential equations admit no closed-form solutions. Numerical methods ex-
ecuted on computers with finite memory and running time necessarily introduce errors due to the discretiza-
tion of continuous variables and the use of floating-point arithmetic to approximate real numbers, not to men-
tion possible implementation errors. In order to overcome such issues and propose highly reliable software
to mathematicians, we advocate the combination of validated numerics [9, 10] and formal proof using Rocq.
The main objective of this internship is the development and formalization in Rocq of efficient and validated
numerical algorithms to rigorously approximate solutions of differential equations.

Methodology of the internship

We here consider ordinary differential equations (ODEs), which are differential equations in one independent real
variable t of the form y(r)(t)= F(t, y(t), y′(t), . . . , y(r−1)(t)). Here are some famous examples:

y′′ = ty (1) y′′ = 6y2 + t (2)


x′ = 10(y− x)

y′ = x(28− z)− y

z′ = xy−8/3 z
(3)

The first one (1) is the Airy equation widely used in physics: it is linear, second-order and time-dependant.
The second one is called Painlevé I and is additionally nonlinear. Finally, the last one is a autonomous (i.e., time-
independent) nonlinear system of dimension 3 and order 1, discovered by the meteorologist Lorenz.

Given sufficiently many initial conditions, computer algebra methods [5, 2, 12] allow for computing effi-
ciently the coefficients of the Taylor expansion y(t) = ∑

n⩾0 antn of the solution. The key idea is to cleverly
define a Newton operator such that each iteration doubles the number of correctly computed coefficients an.
Such a strategy is however purely symbolic: it requires the coefficients to be exactly representable numbers
(e.g., rational or algebraic numbers) and it does not provide error bounds when truncated the series to finite
degree.
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In this internship, we aim at extending this approach to a numerical setting while preserving rigorous math-
ematical statements by also computing error bounds. A possible roadmap is the following:

(1) Translate the method of [2] in a numerical setting: instead of exact power series, we consider approxima-
tions of the form ỹ(t) = ∑N

n=0 an fn(t) in a well-chosen Banach space of functions, like Fourier ( fn(t) =
eint) or Chebyshev ( fn(t) = Tn(t)) approximations. Then the Newton method is expected to “square”
the error at each iteration, even if the initial conditions are given with some errors or not directly known
(e.g., boundary conditions rather than initial ones). Furthermore, more “exotic” bases can be investigated
to approximate solutions with singularities.

(2) Implement an a posteriori validation algorithm in Rocq, which takes an approximation ỹ computed in
the first step, and returns a rigorous error bound with respect to the exact solution y. Such error bound
reconstruction can be obtained by a suitable application of a fixed-point theorem on a similar Newton op-
erator (see [3]). All the necessary tools (interval arithmetic, Chebyshev approximations, fixed-point the-
orem, etc) will be provided by the Rocq librairies Interval1 [8] and ApproxModels2 [4].

(3) Test the resulting prototype implementation on some examples (e.g., Equations (1), (2) and (3)), and
compare its accuracy, efficiency and reliability to other software, either purely numerical, or relying on
validated numerics, or already resorting to formal proof.

Student’s profile

This internship targets Master students in computer science and/or mathematics. It requires typical undergrad-
uate knowledge in mathematics – especially in analysis for differential equations – together with a minimum
experience with the Rocq proof assistant. Even though not mandatory, additional competences in computer
algebra or approximation theory will be considered.
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