AL-CAPODE:
ALgorithms in Computer Assisted Proofs for
Ordinary Differential Equations

B Where? CRIStAL, Université de Lille—in the research
group CFHP (Computer Algebra and HPC), or
LIP ENS Lyon — in the research group Pascaline (Com-
puter Arithmetic, Computer Algebra, Formal Verification) o

B Who? student: Masterin CS or mathematics. 2

advisors: e Florent Bréharcﬂ(CRlStAL, Univ. Lille) —
florent.brehard@univ-lille.fr,

¢ Nicolas Brisebarreﬂ(LlP, ENS de Lyon) —
nicolas.brisebarre@ens-lyon.fr,

* Rémi Prébef](LIP ENS de Lyon) —
remi.prebet@ens-lyon.fr, =

e Maxime Brederﬂ(CMAP, Ecole polytechnique) —
maxime.breden@polytechnique.edu.

o

B When? spring 2026 (4 — 6 months) *

%https:/pro.univ-lille.fr/florent-brehard
bhttps ://perso.ens-lyon.fr/nicolas.brisebarre/ ' P
Chttps:/rprebet.github.io/

dhttps ://sites.google.com/site/maximebreden/

1 Scientific Context and Motivation

Differential equations are ubiquitous across scientific disciplines, from physics and engineering to biology and
economics. While their definition is simple, they can encode highly complex dynamical behaviors, making
their rigorous analysis both crucial and challenging. In recent years, computer-assisted proofs have revolution-
ized the field by solving long-standing open problems and conjectures that were previously out of reach for tra-
ditional pen-and-paper methods [9]. Notable examples are the proof of the existence of the Lorenz attractor
by Tucker [8] (depicted above), or the very recent announced proof of non-uniqueness of Leray-Hopf solutions
for the Navier-Stokes equations [4]. While the remarkable successes of recent years are the result of a fairly
general approach, we are still a long way from automatic processing of these classes of dynamic systems, and
the necessary numerical calculations are not performed using formal tools that can provide the level of safety
that one would expect for these computer-assisted proofs. The aim of the project presented here is to make
significant progress on the first issue.

2 State of the Art

Afairly general method [9,[7] [T, Chap. 1] for dealing with these problems has emerged over the past thirty years,
particularly through a Newton-like a posteriori approach in suitable function spaces. This approach provides
rigorous bounds on solutions and enables the verification of existence and uniqueness of solutions to differen-
tial equations. It consists of the following steps:

* Formulate the differential problem as a zero-finding problem for an operator &. For example, the map
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¢ Numerically solve this problem with standard routines from numerical analysis, to obtain an approx-
imation ¥ of the solution y under the form of a finite sum §(x) = Zzzoakfk(x) in a suitable basis for
functions (f3) (e.g., f»(x) = x* for Taylor approximations, or f3(x) = e*** for periodic approximations);

¢ Aposteriorivalidate this candidate approximation y by computing a rigorous error bound on || — y|| :=
maxycg |§(x) — y(x)| over the interval of interest I. For this, the zero-finding problem Z(y) = 0 must be
reformulated as a fixed-point problem A(y) = y. Then Banach’s fixed-point theorem yields the desired
error bound, provided one can rigorously prove that A" is contracting around j.

The construction of this fixed-point operator A" notably requires to compute an explicit linear operator «f
approximating the inverse of & (or its linearization around #). To do so, a common approach in [9] [T, Chap.
1] consists in seeing & as an infinite matrix acting on sequences of coefficients (a ) representing functions in
the basis (f3). «f is then computed by inverting a finite-dimensional truncation of this matrix. However, the
computational complexity of this approach remains a significant challenge, as investigated in [3]. This is due
to the potentially large truncation index needed to compute a sufficiently accurate «f.

An alternative approach, proposed in [2], focuses on solving linear ordinary differential equations (ODEs)
with prescribed initial conditions. Instead of computing «f by finite-dimensional truncation and inversion, it
relies on the following two ingredients:

* ananalytic formula expressing the inverse operator. In the exp example above, & in (1) is inverted as
X
F YN he)=y:x— (c+f h(t)exp(—t)dt) exp(x).
0

* aneffective approximation o/ by replacing analytic functions appearingin this explicit formula by com-
putable approximations, e.g., finite series in the basis (f3,). In the example above, exp(x) and exp(—x)
are replaced by approximations ¢(x) and y(x) to define

Ah,ec)=y:x—

- f ) h(t)w(t)dt) (),
0

with which explicit and rigorous computations are possible.

By exploiting the structure of the inverse rather than seeingitas an unstructured infinite matrix, this method
features significantly better complexity and can solve harder instances.

3 Internship Project

The goal of thisinternshipisto explore the generalization of this method to broaderand more ambitious classes
of differential equations, by addressing the following questions:

* Canthe method of [2] be extended to nonlinear ODEs, by simply linearizing the operator & around the
approximate solution §?

* How can this approach be generalized to boundary value problems or periodic solutions of periodic
ODEs? Indeed, the existence of a solution is not always guaranteed.

¢ |sit possible to adapt this method to delay differential equations, which are of growing importance in
modeling real-world phenomena? Such an equation, of the form

y'(x) = (¢, y(x), y(x — 1)),
must come with an infinite-dimensional initial condition, namely the values of y over (-, 0].

¢ Dependingon the differential equation, the type of initial conditions and the interval of definition (com-
pact, infinite or semi-infinite), what is the most suitable basis (f3)?

A proposed roadmap for this work is the following:



Review the existing literature on computer-assisted proofs for differential equations and the various al-
gorithms to compute rigorous solutions.

Investigate the theoretical and practical challenges of extending the method of [2] to the above-mentioned
classes of problems.

Analyze the computational complexity of the resulting algorithms and implement them using, for ex-
ample, the Arb/FLINT library for validated numerics [SE

Test the algorithms on instances of problems from the literature: Can we compute the solutions faster?
Can we extend the range of parameters over which the solution can be computed in reasonable time?
A possible challenge would be to validate some of the works about chaos vs. long-term stability of the
solar system by Laskar (see, e.g., [6], and [T0] for a recent tentative of validation).

Depending on the progress and results, this work may naturally extend into a PhD project focused on the
development of efficient algorithms and libraries dedicated to computer-assisted proofs for differential equa-
tions and dynamical systems.

4 Prerequisites

This internship targets Master students in computer science and/or mathematics. It requires typical under-
graduate knowledge in mathematics —especially in analysis for differential equations—and computer science
-computeralgebra, computer arithmeticorapproximation theory -, aswell as an interestin code development.
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