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I. Scientific context: Numerical computation with singular algebraic curves

Motivation. Real and complex algebraic curves are fundamental for many applications in computer science,
mathematics and physics. Although they are simply defined implicitly by polynomial relations in their coordi-
nates:

P1(x1, . . . , xn) = ·· · = Pr(x1, . . . , xn) = 0, P j ∈K[x1, . . . , xn] withK = Q, R, C . . . ,

manipulating them efficiently and explicitly (parametrization, intersection, topology, etc.) requires sophisti-
cated algorithms that have been continuously developed over last decades in computational algebraic geom-
etry [8, 1], either purely symbolically or with the use of numerics [22, 13].

Singularities are the points where the curve is not similar to a line, like a pinch or a crossing of two branches
(see the two red dots in the figure above). They occur in many situations like the plane projection of a space
curve, or when a robot passes through a singular position. Particular care is needed at singularities since algo-
rithms designed for regular curves may exhibit critical behavior at those points, like division by zero or numeri-
cal instability. This is a challenge for applications where maximum confidence is required, such as safety-critical
engineering or computer-aided proofs in mathematics: a surgical robot is not safe up to erratic numerical be-
havior, nor is a geometry theorem true up to rounding errors.

Validated numerics [17, 25] aims at computing with numerical set-valued representations (real intervals,
complex balls, set of functions described by a polynomial approximation and an error bound, etc.), thus ex-
ploiting the efficiency of floating-point arithmetic while guaranteeing actual mathematical statements: the
solution is contained in the computed set. Such techniques have been successfully employed for critical appli-
cations and computer-assisted proofs (see, e.g., [24, 26, 6]). The goal of this internship is to treat singularities of
algebraic curves using symbolic-numeric methods and validated numerics to combine efficiency and reliability.

II. Objective: A validated symbolic-numeric Newton-Puiseux algorithm

The Newton-Puiseux algorithm computes parametrizations of the branches of a curve implicitly defined by
P(X ,Y )= 0 at a singularity x0 under the form of a Puiseux series (i.e., power series with fractional exponents),
with algebraic coefficients ak:

Y (X )= ∑
k⩾k0

ak(X − x0)
k
e , e ∈N∗, k0 ∈Z, ak ∈C (k ⩾ k0).
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Despite significant improvements made on Newton-Puiseux over the last years (see [20, 21] and references
therein), the intrinsic representation size of the algebraic numbers ak makes this symbolic algorithm not com-
petitive, even for problems P(X ,Y ) = 0 of moderate degree (10 – 100). Consequently, in presence of singu-
larities, many algorithms avoid the use of Puiseux series and prefer turning around such points when possible.
Doing so, however, they ignore the crucial geometrical information encoded by singularities, and they increase
the risk of numerical instability when working close to a singular point without exploiting it.

Yet, in many situations, computing accurate numerical approximations of the ak together with rigorous and
tight error bounds, rather than exact representations, is sufficient. Therefore, we propose to design a validated
symbolic-numeric Newton-Puiseux algorithm, following these steps:

1. Compute the coefficients ak numerically following the structure of the Puiseux series (i.e., its exponents),
obtained using [19]. Note that, without this structure information, such a numerical method applied
close to a singularity would be highly unstable.

2. Finally, design a validation method to compute rigorous and tight error bounds on the ak ’s approximate
values. This will involve techniques known as fixed-point a posteriori validation [5, §3.3], where error bounds
are obtained afterwards from the application of a suitable fixed-point theorem. A specific difficulty here
to tackle is that singular equations are typical examples of ill-posed problems: they become regular but
highly ill-conditioned under infinitesimal perturbations.

Besides theoretical results, another important part of the internship is a neat implementation in Julia of
this validated symbolic-numeric Newton-Puiseux algorithm, relying on the Arb library for validated numerics
[16]. Our objective is treating examples of much higher degrees, say 1,000 – 10,000, than the purely symbolic
Newton-Puiseux algorithm.

III. The future: Applications to computational algebraic geometry

We have a guaranteed PhD funding to continue the work initiated during this internship. The resolution of sin-
gularities of algebraic curves using the symbolic-numeric Newton-Puiseux algorithm will be the cornerstone
for improvements of algorithms in real and complex algebraic geometry, which in the future (beyond this in-
ternship) will help tackling computationally challenging applications in the following domains:

• Robotics often involves polynomial systems describing real algebraic (or semi-algebraic) varieties repre-
senting, for example, the possible configurations of a robot. Connectivity queries are essential for motion
planning, and they can be handled by computing a roadmap of the algebraic variety [7, 12], thus reducing
the problem to connectivity queries on real algebraic curves. A possible approach for this [15, 14] is to
project the curve onto a plane and to analyze the resulting 2D singular curve [11]. Such an analysis could
be improved with the use of symbolic-numeric Puiseux series.

• Homotopy methods are used to compute numerical roots of polynomial systems by deformation (the ho-
motopy) from simpler systems [3]. The curves tracking the roots may cross each other, resulting in singu-
larities that can be treated rigorously with the validated symbolic-numeric Newton-Puiseux algorithm.

• The Abel-Jacobi map [4, §1] links crucial information of a complex algebraic curve (a Riemann surface) to
computational data, namely contour integrals along paths connecting singularities. Computing them
rigorously is a major step towards proofs of existence of particular solutions to nonlinear wave equa-
tions in physics [2, 10, 9, 18]: KdV (Korteweg-de Vries), KP (Kadomtsev-Petviashvili) and NLS (nonlinear
Schrödinger). This also has applications in computer algebra, e.g. integrating algebraic functions [23].

2



IV. References
[1] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry. Springer Berlin, Heidelberg, 2003.

[2] E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its, and V. B. Matveev. Algebro-geometric approach to nonlinear inte-
grable equations, volume 1994. Springer, 1994.

[3] C. Beltrán and A. Leykin. Robust certified numerical homotopy tracking. Found. Comput. Math., 13:253–295, 2013.

[4] A. I. Bobenko and C. Klein. Computational Approach to Riemann Surfaces, volume 2013. Springer Science & Business
Media, 2011.

[5] F. Bréhard. Certified numerics in function spaces : polynomial approximations meet computer algebra and formal proof. PhD
thesis, University of Lyon, France, 2019.

[6] F. Bréhard, N. Brisebarre, M. Joldes, and W. Tucker. Efficient and validated numerical evaluation of abelian integrals.
ACM Trans. Math. Softw., pages 1 – 38, 2023. accepted for publication. https://hal.science/hal-03561096.

[7] J. Canny. The complexity of robot motion planning. PhD thesis, MIT, 1987.

[8] D. Cox, J. Little, D. O’Shea, and M. Sweedler. Ideals, varieties, and algorithms. Springer, 1994.

[9] B. Deconinck and M. S. Patterson. Computing the Abel map. Physica D: Nonlinear Phenomena, 237(24):3214–3232,
2008.

[10] B. Deconinck and H. Segur. The KP equation with quasiperiodic initial data. Physica D: Nonlinear Phenomena,
123(1):123–152, 1998.

[11] D. N. Diatta, S. Diatta, F. Rouillier, M.-F. Roy, and M. Sagraloff. Bounds for polynomials on algebraic numbers and
application to curve topology. Discrete & Computational Geometry, 67(3):631–697, 2022.

[12] M. S. E. Din and E. Schost. A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real
algebraic sets. Journal of the ACM, 63(6), 2017.

[13] J. D. Hauenstein and A. J. Sommese. What is numerical algebraic geometry? Journal of Symbolic Computation, 79:499–
507, 2017.

[14] M. N. Islam, A. Poteaux, and R. Prébet. Algorithm for connectivity queries on real algebraic curves. In Proceedings of
the 2023 International Symposium on Symbolic and Algebraic Computation, page 345–353. ACM, 2023.

[15] K. Jin and J. Cheng. On the complexity of computing the topology of real algebraic space curves. Journal of Systems
Science and Complexity, 34:809–826, 2021.

[16] F. Johansson. Arb: Efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Transactions on Computers,
66(8):1281–1292, 2017.

[17] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis. Society for Industrial and Applied Mathe-
matics, 2009.

[18] M. S. Patterson. Algebro-geometric algorithms for integrable systems. PhD thesis, University of Washington, 2007.

[19] A. Poteaux and M. Rybowicz. Good reduction of Puiseux series and applications. Journal of Symbolic Computation,
47(1):32 – 63, 2012.

[20] A. Poteaux and M. Weimann. Computing Puiseux series: a fast divide and conquer algorithm. Annales Henri Lebesgue,
4:1061–1102, 2021.

[21] A. Poteaux and M. Weimann. Local polynomial factorisation: improving the Montes algorithm. In Proceedings of the
2022 International Symposium on Symbolic and Algebraic Computation, ISSAC ’22. ACM, 2022.

[22] A. Sommese and C. Wampler. The Numerical solution of systems of polynomials arising in engineering and science. World
Scientific, 2005.

[23] B. M. Trager. Integration of Algebraic Functions. PhD thesis, MIT, 1984.

[24] W. Tucker. A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math., 2:53–117, 2002.

[25] W. Tucker. Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton,
2011.

[26] J. B. van den Berg and J.-P. Lessard. Rigorous numerics in dynamics. Notices Amer. Math. Soc., 62(9):1057–1061, 2015.

3

https://hal.science/hal-03561096

	Scientific context: Numerical computation with singular algebraic curves
	Objective: A validated symbolic-numeric Newton-Puiseux algorithm
	The future: Applications to computational algebraic geometry
	References

