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Validated numerics is the art of designing efficient numerical algorithms, yet reliable ones, i.e. with guaran-
teed error bounds encompassing all sources of errors: uncertain data, rounding errors, discretization, etc.
The goal is to provide scientists in a broad sense with a “certified pocket calculator”. This includes engineers
working on safety-critical applications, but also a novel generation of mathematicians using computers to
prove their theorems.

The goal of this internship is to design and implement validated algorithms to compute with algebraic
curves, which arise in many branches of science. More specifically, we are interested by the difficult case of
singularities, which may cause catastrophic numerical errors if not dealt properly with. These achievements
will later allow us to treat currently unreachable applications in computer algebra, physics and robotics.

I. Scientific Context

Algebraic curves are a fundamental mathematical object with surprisingly many applications. Just within the
context of this internship, this ranges from pure algebraic geometry (the crucial Abel-Jacobi map of a Riemann
surface [4]) to nonlinear waves in physics (e.g., nonlinear Schrödinger, Korteweg-de Vries and Kadomtsev- Petvi-
ashvili equations [10, 9, 17]), computer-aided design and robotics (connectivity queries for motion planning
[7, 11]). From a mathematical point of view, they are often defined by an implicit polynomial equation P(x, y)=
0. For the above-mentioned applications however, it is essential to be able to compute explicitly with them, no-
tably parameterizations x 7→ y(x), intersections or contour integrals along them.

A wide range of exact algorithms have been designed by the computer algebra community for those prob-
lems [24, 1]. Unfortunately, larger instances, such as motion planning of a robot with many degrees of freedom,
remain out of reach for such symbolic approaches. On the other side of the spectrum, efficient numerical meth-
ods relying on floating-point arithmetic have been developed to compute approximate solutions [20, 12]. Yet,
numerical instability occurs when accumulation of errors results into inaccurate or meaningless solutions. This
happens in particular when singularities in the curve (e.g., singular position of a robot [8]) are not detected and
properly handled. This is a major pitfall since singularities are not an accident: they encode crucial information
about the geometry of the curve and hence of the problem. Furthermore, in some specific contexts like safety-
critical applications in engineering or computer-assisted proofs in mathematics (with computational parts of
the proof carried out on a computer), relying on software without guarantees on numerical errors is not accept-
able: a theorem is not true up to numerical errors, a medical robot is not safe up to erratic numerical behavior.

Validated numerics [22], built upon Moore's interval analysis [16], combines the advantages of both symbolic
and numerical computation. It uses numerical set-valued representations of objects (intervals around num-
bers, tubes around functions, etc.) to exploit the efficiency of floating-point arithmetic while guaranteeing real
mathematical statements: the solution, rather than being exactly represented, is contained in the computed
set. Several works successfully applied those techniques to algebraic curves and computational algebraic ge-
ometry [13, 2, 14, 26]. Yet, a rigorous numerical treatment of curves around singularities remains a challenge
that we propose to address in this internship using symbolic-numeric approaches described below. The result-
ing validated numerical software will allow us to treat in the future currently unreachable applications in com-
puter algebra, physics and robotics detailed later.
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II. A validated symbolic-numeric Newton-Puiseux algorithm

At a singular point where ∂P
∂y vanishes (let's say at (x, y)= (0,0)), there is no analytic parameterization x 7→ y(x)

of the curve. The celebrated Newton-Puiseux algorithm [25, §IV.3] computes a formal solution X 7→ Y (X ) in
the form of a Puiseux series using fractional exponents to express the ramification of the curve at this singularity:

Y (X )=
+∞∑

n=n0

anX
n
e with n0 ∈Z and e ∈N∗. (1)

However, the performance of this symbolic algorithm is limited by the size of representations of the algebraic
numbers an to be computed. The intern student will design a validated symbolic-numeric variant of Newton-
Puiseux. A possible roadmap for this is to combine these two approaches:

• The symbolic-numeric approach advocated by one of us [18] consists in first executing Newton-Puiseux
symbolically but modulo some small prime number, thus avoiding the representation size barrier. This
allows us to infer the structure of the solution series (1), notably its ramification index e.

• To turn this strategy into an effective validated algorithms, the coefficients an must be numerically com-
puted with rigorous error bounds in order to get a guaranteed parameterization of the curve all around
the singularity. This will involve techniques from validated numerics, notably fixed-point a posteriori val-
idation [23, 5], where rigorous error bounds are obtained afterwards from the application of a suitable
fixed-point theorem. Elementary subproblems to tackle with such tools are the validation of multiple
roots of univariate polynomials [27] and a generalized Hensel lifting procedure [19].

After designing his algorithm, the intern student will carefully analyze its complexity and compare it to the
classical (i.e., symbolic) Newton-Puiseux. We expect a significant improvement, raising substantial hope to
tackle currently unreachable applications.

Besides theoretical results, another important part of the work is a neat implementation of this validated
symbolic-numeric Newton-Puiseux algorithm. For this, one can rely on dedicated validated numerics libraries
(e.g., MPFI, Arb [15]). Depending on time and the specific skills of the student, further implementation-related
directions can be explored: a formally verified implementation in the Coq theorem prover [3] using the Ap-
proxModels library [6], or a high performance computing (HPC) implementation exploiting parallelism in the
algorithms.

III. The Future: Challenges in Computational Algebraic Geometry

The algorithmic and implementation work realized during the internship will be the base of future challenging
applications in real and complex algebraic geometry where analyzing singularities is a key step, and for which
existing approaches show their limits.

• Connectivity queries are essential for motion planning in robotics [7, 11]. They can be handled by computing
a roadmap of the algebraic variety. Efficient Puiseux series for the real branches of curves will improve this
approach near singularities, which are currently an important bottleneck for practical applications.

• The Abel-Jacobi map [4, §1] is a construction of algebraic geometry linking essential information of a com-
plex algebraic curve to computational data, namely contour integrals along paths connecting singulari-
ties. Being able to compute such objects efficiently and rigorously is a major step toward proofs of exis-
tence of particular solutions to nonlinear wave equations in physics [10, 9, 17]: KdV (Korteweg-de Vries),
KP (Kadomtsev-Petviashvili) and NLS (nonlinear Schrödinger). This also has numerous applications in
computer algebra, e.g. integrating algebraic functions [21].
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IV. Internship Candidate and Advisors

The internship will be co-advised by François Boulier, Adrien Poteaux and Florent Bréhard. The three of them
are members of the CFHP team (Computer Algebra and HPC) in the CRIStAL research unit at Université de Lille.

The candidate must have preferably a mixed background in computer science (scientific/numerical program-
ming, algorithmics) and mathematics (algebra, complex analysis), and a taste for computational mathematics
towards applications. Previous experiences in computer algebra, HPC and/or formal proof will also be consid-
ered.
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